A Study of Effects of Tissue Inhomogeneity on HIFU Beam

نویسندگان

  • Viren R. Amin
  • Ronald A. Roberts
  • Tao Long
  • Bruce Thompson
  • Timothy Ryken
  • Viren Amin
  • Ron Roberts
  • R. B. Thompson
چکیده

The potential of high‐intensity focused ultrasound (HIFU) will not be realized unless the effects of overlaying tissues are understood in such a way that allows for estimation of HIFU dose distribution at a target tissue. We employ computational models to examine the impact of phase aberration on tissue ablation. Thompson and Roberts have recently studied the effects of phase aberration on ultrasound focusing in aerospace engine materials such as titanium alloy, and have developed a computational model to examine these effects. The ultrasound beam observed after transmission through the fused quartz (homogeneous) and that observed after transmission through the titanium (inhomogeneous) demonstrate the severe beam wavefield amplitude distortion introduced by the velocity inhomogeneity‐induced phase aberration. We study applicability of this approach to model phase aberration in inhomogeneous tissues and its effect on HIFU dose distribution around the focus. It is hypothesized that the ill‐effects of phase aberration accumulate during propagation through intervening tissue in which field intensities are substantially lower than that in the focal zone, and it is therefore appropriate to use a linear acoustic model to describe the transport of energy from the transducer to the volume targeted for ablation. We present initial results of the simulation and experiments of beam measurements under water without and with different tissue layers. © 2006 American Institute of Physics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study of Effects of Overlaying Tissues on HIFU Lesion

Understanding the effect of overlaying tissues on HIFU lesion is crucial for estimating HIFU dose distribution at a target tissue. We have run a series of experiments to systematically observe the effects of the overlaying tissues on the HIFU beam and ultimately the lesion created in the target tissue. First, we mapped out the HIFU transducer beam (in low power) under water without and with dif...

متن کامل

بررسی انکسار پرتوهای فراصوت در هایفوتراپی و بهینه سازی عمق کانونی مبدل فراصوت جهت افزایش دقت درمان

Background and purpose: Nowadays High-intensity focused ultrasound (HIFU) as non-ionizing radiation is used for cancer treatment. Ultrasound beams when crossing the border of two environments are refracted causing decrease in the beam focusing within a tumor. Also, it may induce damage to normal tissues. In this study, we evaluated the focal depth shift induced by ultrasonic beam refraction. ...

متن کامل

Tissue inhomogeneity in proton therapy and investigation of its effects on BRAGG peak by using MCNPX code

Background: Hadron therapy for malignant tumor is becoming increasingly popular. There are many factors which effect on implementation of a proper treatment planning. The purpose of this work is to investigate the inhomogeneity effects as affecting factor on proton range, Full width at half maximum (FWHM) and 20% position of penumbra (P20) by MCNPX code. Materials and Methods: An inhomogeneous ...

متن کامل

Evaluation of Accuracy and Quality assurance of external beam therapy with photons

Introduction: Receiving exact dose by the patients is vital in radiotherapy. In radiation therapy, the dosimetry of radiations is too important because of successful radiation inquires for delivering the exact dose to the target volume. This study is to evaluate the tolerances and the accuracy of calculated dose of photon beams in the treatment software system. The TECDOC1583 p...

متن کامل

Design of homogeneous and heterogeneous human equivalent thorax phantom for tissue inhomogeneity dose correction using TLD and TPS measurements

Background: The purpose of this study is to fabricate inexpensive in-house low cost homogeneous and heterogeneous human equivalent thorax phantom and assess the dose accuracy of the Treatment Planning Systems (TPS) calculated values for different lung treatment dosimetery. It is compared with Thermoluminescent Dosimeter (TLD) measurement. Materials and Methods: Homogeneous and heterogeneous tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017